Rappel : ce cours d'algorithmique et de programmation
est enseigné à l'Université Paris 7,
dans la spécialité PISE du Master MECI (ancien DESS AIGES)
par Christophe Darmangeat

Partie 3
Les Tests
« Il est assez difficile de trouver une erreur dans son code quand on la cherche. C’est encore bien plus dur quand on est convaincu que le code est juste. » - Steve McConnell
« Il n’existe pas, et il n’existera jamais, de langage dans lequel il soit un tant soit peu difficile d’écrire de mauvais programmes ». - Anonyme
« Si le déboguage est l’art d’enlever les bogues, alors la programmation doit être l’art de les créer. » - Anonyme
Je vous avais dit que l’algorithmique, c’est la combinaison de quatre structures élémentaires. Nous en avons déjà vu deux, voici la troisième. Autrement dit, on a quasiment fini le programme.
Mais non, je rigole.
1. De quoi s’agit-il ?
Reprenons le cas de notre « programmation algorithmique du touriste égaré ». Normalement, l’algorithme ressemblera à quelque chose comme : « Allez tout droit jusqu’au prochain carrefour, puis prenez à droite et ensuite la deuxième à gauche, et vous y êtes ».
Mais en cas de doute légitime de votre part, cela pourrait devenir : « Allez tout droit jusqu’au prochain carrefour et là regardez à droite. Si la rue est autorisée à la circulation, alors prenez la et ensuite c’est la deuxième à gauche. Mais si en revanche elle est en sens interdit, alors continuez jusqu’à la prochaine à droite, prenez celle-là, et ensuite la première à droite ».
Ce deuxième algorithme a ceci de supérieur au premier qu’il prévoit, en fonction d’une situation pouvant se présenter de deux façons différentes, deux façons différentes d’agir. Cela suppose que l’interlocuteur (le touriste) sache analyser la condition que nous avons fixée à son comportement (« la rue est-elle en sens interdit ? ») pour effectuer la série d’actions correspondante.
Eh bien, croyez le ou non, mais les ordinateurs possèdent cette aptitude, sans laquelle d’ailleurs nous aurions bien du mal à les programmer. Nous allons donc pouvoir parler à notre ordinateur comme à notre touriste, et lui donner des séries d’instructions à effectuer selon que la situation se présente d’une manière ou d’une autre. Cette structure logique répond au doux nom de test. Toutefois, ceux qui tiennent absolument à briller en société parleront également de structure alternative.
2. Structure d’un test
Il n’y a que deux formes possibles pour un test ; la première est la plus simple, la seconde la plus complexe.
Si booléen Alors
  Instructions
Finsi
Si booléen Alors
  Instructions 1
Sinon
  Instructions 2
Finsi
Ceci appelle quelques explications.
Un booléen est une expression dont la valeur est VRAI ou FAUX. Cela peut donc être (il n’y a que deux possibilités) :
  • une variable (ou une expression) de type booléen
  • une condition
Nous reviendrons dans quelques instants sur ce qu’est une condition en informatique.
Toujours est-il que la structure d’un test est relativement claire. Dans la forme la plus simple, arrivé à la première ligne (Si… Alors) la machine examine la valeur du booléen. Si ce booléen a pour valeur VRAI, elle exécute la série d’instructions. Cette série d’instructions peut être très brève comme très longue, cela n’a aucune importance. En revanche, dans le cas où le booléen est faux, l'ordinateur saute directement aux instructions situées après le FinSi.
Dans le cas de la structure complète, c'est à peine plus compliqué. Dans le cas où le booléen est VRAI, et après avoir exécuté la série d'instructions 1, au moment où elle arrive au mot « Sinon », la machine saute directement à la première instruction située après le « Finsi ». De même, au cas où le booléen a comme valeur « Faux », la machine saute directement à la première ligne située après le « Sinon » et exécute l’ensemble des « instructions 2 ». Dans tous les cas, les instructions situées juste après le FinSi seront exécutées normalement.
En fait, la forme simplifiée correspond au cas où l’une des deux « branches » du Si est vide. Dès lors, plutôt qu’écrire « sinon ne rien faire du tout », il est plus simple de ne rien écrire. Et laisser un Si... complet, avec une des deux branches vides, est considéré comme une très grosse maladresse pour un programmeur, même si cela ne constitue pas à proprement parler une faute.
Exprimé sous forme de pseudo-code, la programmation de notre touriste de tout à l’heure donnerait donc quelque chose du genre :
Allez tout droit jusqu’au prochain carrefour
Si la rue à droite est autorisée à la circulation Alors
  Tournez à droite
  Avancez
  Prenez la deuxième à gauche
Sinon
  Continuez jusqu’à la prochaine rue à droite
  Prenez cette rue
  Prenez la première à droite
Finsi

Retour Haut de Page
3. Qu’est ce qu’une condition ?
Une condition est une comparaison
Cette définition est essentielle ! Elle signifie qu’une condition est composée de trois éléments :
  • une valeur
  • un opérateur de comparaison
  • une autre valeur
Les valeurs peuvent être a priori de n’importe quel type (numériques, caractères…). Mais si l’on veut que la comparaison ait un sens, il faut que les deux valeurs de la comparaison soient du même type !
Les opérateurs de comparaison sont :
  • égal à…
  • différent de…
  • strictement plus petit que…
  • strictement plus grand que…
  • plus petit ou égal à…
  • plus grand ou égal à…
L’ensemble des trois éléments composant la condition constitue donc, si l’on veut, une affirmation, qui à un moment donné est VRAIE ou FAUSSE.
À noter que ces opérateurs de comparaison peuvent tout à fait s’employer avec des caractères. Ceux-ci sont codés par la machine dans l’ordre alphabétique (rappelez vous le code ASCII vu dans le préambule), les majuscules étant systématiquement placées avant les minuscules. Ainsi on a :
“t” < “w”               VRAI
“Maman” > “Papa“        FAUX
“maman” > “Papa”        VRAI
Remarque très importante 

En formulant une condition dans un algorithme, il faut se méfier comme de la peste de certains raccourcis du langage courant, ou de certaines notations valides en mathématiques, mais qui mènent à des non-sens informatiques. Prenons par exemple la phrase « Toto est compris entre 5 et 8 ». On peut être tenté de la traduire par : 5 < Toto < 8
Or, une telle expression, qui a du sens en français, comme en mathématiques, ne veut rien dire en programmation. En effet, elle comprend deux opérateurs de comparaison, soit un de trop, et trois valeurs, soit là aussi une de trop. On va voir dans un instant comment traduire convenablement une telle condition.
4. Conditions composées
Certains problèmes exigent parfois de formuler des conditions qui ne peuvent pas être exprimées sous la forme simple exposée ci-dessus. Reprenons le cas « Toto est inclus entre 5 et 8 ». En fait cette phrase cache non une, mais deux conditions. Car elle revient à dire que « Toto est supérieur à 5 et Toto est inférieur à 8 ». Il y a donc bien là deux conditions, reliées par ce qu’on appelle un opérateur logique, le mot ET.
Comme on l’a évoqué plus haut, l’informatique met à notre disposition quatre opérateurs logiques : ET, OU, NON, et XOR.
  • Le ET a le même sens en informatique que dans le langage courant. Pour que "Condition1 ET Condition2" soit VRAI, il faut impérativement que Condition1 soit VRAI et que Condition2 soit VRAI. Dans tous les autres cas, "Condition 1 et Condition2" sera faux.
  • Il faut se méfier un peu plus du OU. Pour que "Condition1 OU Condition2" soit VRAI, il suffit que Condition1 soit VRAIE ou que Condition2 soit VRAIE. Le point important est que si Condition1 est VRAIE et que Condition2 est VRAIE aussi, Condition1 OU Condition2 reste VRAIE. Le OU informatique ne veut donc pas dire « ou bien »
  • Le XOR (ou OU exclusif) fonctionne de la manière suivante. Pour que "Condition1 XOR Condition2" soit VRAI, il faut que soit Condition1 soit VRAI, soit que Condition2 soit VRAI. Si toutes les deux sont fausses, ou que toutes les deux sont VRAI, alors le résultat global est considéré comme FAUX. Le XOR est donc l'équivalent du "ou bien" du langage courant.
    J’insiste toutefois sur le fait que le XOR est une rareté, dont il n’est pas strictement indispensable de s’encombrer en programmation.
  • Enfin, le NON inverse une condition : NON(Condition1)est VRAI si Condition1 est FAUX, et il sera FAUX si Condition1 est VRAI. C'est l'équivalent pour les booléens du signe "moins" que l'on place devant les nombres.
    Alors, vous vous demandez peut-être à quoi sert ce NON. Après tout, plutôt qu’écrire NON(Prix > 20), il serait plus simple d’écrire tout bonnement Prix=<20.  Dans ce cas précis, c’est évident qu’on se complique inutilement la vie avec le NON. Mais si le NON n'est jamais indispensable, il y a tout de même des situations dans lesquelles il s'avère bien utile.
On représente fréquemment tout ceci dans des tables de vérité (C1 et C2 représentent deux conditions, et on envisage à chaque fois les quatre cas possibles)

C1 et C2 C2 Vrai C2 Faux
C1 Vrai Vrai Faux
C1 Faux Faux Faux

C1 ou C2 C2 Vrai C2 Faux
C1 Vrai Vrai Vrai
C1 Faux Vrai Faux

C1 xor C2 C2 Vrai C2 Faux
C1 Vrai Faux Vrai
C1 Faux Vrai Faux

Non C1  
C1 Vrai Faux
C1 Faux Vrai
LE GAG DE LA JOURNÉE...

...Consiste à formuler dans un test une condition qui ne pourra jamais être vraie, ou jamais être fausse. Si ce n’est pas fait exprès, c’est assez rigolo. Si c’est fait exprès, c’est encore plus drôle, car une condition dont on sait d’avance qu’elle sera toujours fausse n’est pas une condition. Dans tous les cas, cela veut dire qu’on a écrit un test qui n’en est pas un, et qui fonctionne comme s’il n’y en avait pas.
Cela peut être par exemple : Si Toto < 10 ET Toto > 15 Alors… (il est très difficile de trouver un nombre qui soit à la fois inférieur à 10 et supérieur à 15 !)
Bon, ça, c’est un motif immédiat pour payer une tournée générale, et je sens qu’on ne restera pas longtemps le gosier sec.
5. Tests imbriqués
Graphiquement, on peut très facilement représenter un SI comme un aiguillage de chemin de fer (ou un aiguillage de train électrique, c’est moins lourd à porter). Un SI ouvre donc deux voies, correspondant à deux traitements différents. Mais il y a des tas de situations où deux voies ne suffisent pas. Par exemple, un programme devant donner l’état de l’eau selon sa température doit pouvoir choisir entre trois réponses possibles (solide, liquide ou gazeuse).
Une première solution serait la suivante :
Variable Temp en Entier
Début
Ecrire "Entrez la température de l’eau :"
Lire Temp
Si Temp =< 0 Alors
  Ecrire "C’est de la glace"
FinSi
Si Temp > 0 Et Temp < 100 Alors
  Ecrire "C’est du liquide"
Finsi
Si Temp > 100 Alors
  Ecrire "C’est de la vapeur"
Finsi
Fin
Vous constaterez que c’est un peu laborieux. Les conditions se ressemblent plus ou moins, et surtout on oblige la machine à examiner trois tests successifs alors que tous portent sur une même chose, la température de l'eau (la valeur de la variable Temp). Il serait ainsi bien plus rationnel d’imbriquer les tests de cette manière  :
Variable Temp en Entier
Début
Ecrire "Entrez la température de l’eau :"
Lire Temp
Si Temp =< 0 Alors
  Ecrire "C’est de la glace"
Sinon
  Si Temp < 100 Alors
    Ecrire "C’est du liquide"
  Sinon
    Ecrire "C’est de la vapeur"
  Finsi
Finsi
Fin
Nous avons fait des économies : au lieu de devoir taper trois conditions, dont une composée, nous n’avons plus que deux conditions simples. Mais aussi, et surtout, nous avons fait des économies sur le temps d’exécution de l’ordinateur. Si la température est inférieure à zéro, celui-ci écrit dorénavant « C’est de la glace » et passe directement à la fin, sans être ralenti par l’examen d’autres possibilités (qui sont forcément fausses).
Cette deuxième version n’est donc pas seulement plus simple à écrire et plus lisible, elle est également plus performante à l’exécution.
Les structures de tests imbriqués sont donc un outil indispensable à la simplification et à l’optimisation des algorithmes. 
6. De l’aiguillage à la gare de tri
« J'ai l'âme ferroviaire : je regarde passer les vaches » (Léo Ferré)
Cette citation n’apporte peut-être pas grand chose à cet exposé, mais je l’aime bien, alors c’était le moment ou jamais.
En effet, dans un programme, une structure SI peut être facilement comparée à un aiguillage de train. La voie principale se sépare en deux, le train devant rouler ou sur l’une, ou sur l’autre, et les deux voies se rejoignant tôt ou tard pour ne plus en former qu’une seule, lors du FinSi. On peut schématiser cela ainsi :

Mais dans certains cas, ce ne sont pas deux voies qu’il nous faut, mais trois, ou même plus. Dans le cas de l’état de l’eau, il nous faut trois voies pour notre « train », puisque l’eau peut être solide, liquide ou gazeuse. Alors, nous n’avons pas eu le choix : pour deux voies, il nous fallait un aiguillage, pour trois voies il nous en faut deux, imbriqués l’un dans l’autre.
Cette structure (telle que nous l’avons programmée à la page précédente) devrait être schématisée comme suit :

Soyons bien clairs : cette structure est la seule possible du point de vue logique (même si on peut toujours mettre le bas en haut et le haut en bas). Mais du point de vue de l’écriture, le pseudo-code algorithmique admet une simplification supplémentaire. Ainsi, il est possible (mais non obligatoire, que l’algorithme initial :
Variable Temp en Entier
Début
Ecrire "Entrez la température de l’eau :"
Lire Temp
Si Temp =< 0 Alors
  Ecrire "C'est de la glace"
Sinon
  Si Temp < 100 Alors
    Ecrire "C’est du liquide"
  Sinon
    Ecrire "C’est de la vapeur"
  Finsi
Finsi
Fin
devienne :
Variable Temp en Entier
Début
Ecrire "Entrez la température de l’eau :"
Lire Temp
Si Temp =< 0 Alors
  Ecrire "C’est de la glace"
SinonSi Temp < 100 Alors
  Ecrire "C’est du liquide"
Sinon
  Ecrire "C’est de la vapeur"
Finsi
Fin
Dans le cas de tests imbriqués, le Sinon et le Si peuvent être fusionnés en un SinonSi. On considère alors qu’il s’agit d’un seul bloc de test, conclu par un seul FinSi
Le SinonSi permet en quelque sorte de créer (en réalité, de simuler) des aiguillages à plus de deux branches. On peut ainsi enchaîner les SinonSi les uns derrière les autres pour simuler un aiguillage à autant de branches que l’on souhaite.
7. Variables Booléennes
Jusqu’ici, pour écrire nos tests, nous avons utilisé uniquement des conditions. Mais vous vous rappelez qu’il existe un type de variables (les booléennes) susceptibles de stocker les valeurs VRAI ou FAUX. En fait, on peut donc entrer des conditions dans ces variables, et tester ensuite la valeur de ces variables.
Reprenons l’exemple de l’eau. On pourrait le réécrire ainsi :
Variable Temp en Entier
Variables A, B en Booléen
Début
Ecrire "Entrez la température de l’eau :"
Lire Temp
A ← Temp =< 0
B ← Temp < 100
Si A Alors
  Ecrire "C’est de la glace"
SinonSi B Alors
  Ecrire "C’est du liquide"
Sinon
  Ecrire "C’est de la vapeur"
Finsi
Fin
A priori, cette technique ne présente guère d’intérêt : on a alourdi plutôt qu’allégé l’algorithme de départ, en ayant recours à deux variables supplémentaires.
  • Mais souvenons-nous : une variable booléenne n’a besoin que d’un seul bit pour être stockée. De ce point de vue, l’alourdissement n’est donc pas considérable.
  • dans certains cas, notamment celui de conditions composées très lourdes (avec plein de ET et de OU tout partout) cette technique peut faciliter le travail du programmeur, en améliorant nettement la lisibilité de l’algorithme. Les variables booléennes peuvent également s’avérer très utiles pour servir de flag, technique dont on reparlera plus loin (rassurez-vous, rien à voir avec le flagrant délit des policiers).